

WeightedVoting Documentation

Module name: Weighted Voting

Description: Weighted Voting Classifier

Author: Ken Ross, Joshua Gould (Broad Institute)

gp-help@broad.mit.edu

Summary: The weighted voting algorithm makes a weighted linear combination of relevant "marker" or "informative" features obtained in the training set to provide a classification scheme for new samples. Target classes (classes 0 and 1) can be for example defined based on a phenotype such as morphological class or treatment outcome. The selection of classifier input features (marker features) is accomplished either by computing a signal-to-noise statistic $S_x = (\mu_0 - \mu_1)/(\sigma_0 + \sigma_1)$ where μ_0 is the mean of class 0 and σ_0 is the standard deviation of class 0 or by reading in a list of user provided features. The class predictor is uniquely defined by the initial set of samples and markers. In addition to computing S_x , the algorithm also finds the decision boundaries (half way) between the class means: $B_x = (\mu_0 + \mu_1)/2$ for each feature x. To predict the class of a test sample y, each feature x in the feature set casts a vote: $V_x = S_x (G_{xy} - B_x)$ and the final vote for class 0 or 1 is $sign(S_x V_x)$. The strength or confidence in the prediction of the winning class is $(V_{win} - V_{lose})/(V_{win} +$ V_{lose}) (i.e., the relative margin of victory for the vote). Notice that this algorithm is quite similar to Naïve Bayes (see the appendix in Slonim et al. 2000). The model can tested on a separately specified test set. Additionally, the model can be saved and used subsequently on additional test sets.

The table below summarizes the different options available and which parameters are required depending on the option selected.

Parameter	Train	Test with saved model	Train/Test
	create a predictive	run a saved model on a	create a model on
	model from a	new test dataset	training data and run it
	training dataset		on test data
train.filename	Required	No	Required
train.class.filename	Required	No	Required
saved.model.filename	No	Required	No
test.filename	No	Required	Required
test.class.filename	No	Required	Required
num.features or	Required	No	Required
feature.list.filename			
model.file	Required	No	Required
pred.results.file	No	Yes	Yes

Parameters

Name	Description	
train.filename	training data file namegct, .res, .odf type = Dataset	

	ignored if a saved model (saved.model.filename) is used	
train.class.filename	class file for training datacls ignored if a saved model (saved.model.filename) is used	
saved.model.filename	input Weighted Voting model fileodf type = Weighted Voting Prediction Model	
model.file	name of output KNN model fileodf type = Weighted Voting Prediction Model	
test.filename	test data file namegct, .res, .odf type = Dataset	
test.class.filename	class file for test datacls	
num.features	number of signal-to-noise selected features if feature list filename is not specified	
feature.list.filename	features to use for prediction	
pred.results.file	name of prediction results output file – .odf type = Prediction Results	

References:

- Golub T.R., Slonim D.K., et al. "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring," Science, 531-537 (1999).
- Slonim, D.K., Tamayo, P., Mesirov, J.P., Golub, T.R., Lander, E.S. (2000)
 Class prediction and discovery using gene expression data. In Proceedings of
 the Fourth Annual International Conference on Computational Molecular
 Biology (RECOMB) 2000. ACM Press, New York, pp. 263–272.

Return Value:

- 1. if test data is supplied, a file containing the prediction results
- 2. if training data is specified, a file containing the saved prediction model

Platform dependencies:

Task type: Prediction

CPU type: any OS: any Java JVM level: 1.4 Language: Java